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Abstract 

Nonbonded potential parameters were derived from the 
crystal structures of five perchlorohydrocarbons. Inter- 
molecular interactions were represented by interatomic 
(exp-6-1) nonbonded potential functions. Optimized 
values for the nonbonded potential parameters were 
obtained by four different methods. These methods are: 
direct fit to structural parameters; Taylor's series 
approximation for direct fit; force minimization with 
diagonal-weight matrix; and force minimization with 
full-weight matrix. The direct fit to structural param- 
eters method gave the best results but was expensive of 
computer time. The Taylor's series approximation for 
direct fit method was satisfactory. The force mini- 
mization with diagonal weights method gave poor 
results. Force minimization with full weights was the 
best of the approximation methods, and was almost as 
good as the direct-fit method. The transferability of the 
nonbonded potential parameters among the five com- 
pounds was established within threshold error limits. 
Anisotropic potential functions for chlorine, which have 
been suggested by other workers for the polymorphic 
1,4-dichlorobenzene crystal structures, were not found 
necessary to achieve threshold fits to these perchloro- 
hydrocarbon structures. 

Introduction 

Nonbonded interatomic potential functions which can 
be used to reproduce successfully the crystal structures 
of aromatic and aliphatic hydrocarbons have been 
available for several years (Williams, 1972; Williams & 
Starr, 1977). Recently, attempts have been made to 
extend this approach to molecular crystals of 
chlorinated hydrocarbons. 

Bonadeo & D'Alessio (1973) fitted nonbonded 
potential functions of the (exp-6) type to the crystal 
structures and lattice frequencies of 1,4-dichloro- 
benzene (a and fl phases), 1,3,5-trichlorobenzene, and 
hexachlorobenzene. Reynolds, Kjems & White (1974) 
performed a similar calculation by fitting (exp-6) non- 
bonded potential functions to the crystal structures of 
1,4-dichlorobenzene (st phase), tetrachlorobenzene, and 
hexachlorobenzene; the lattice frequencies of the first 
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and last compound were also fitted. Neither of these 
papers considered the possibility of the presence of net 
atomic charges in the molecules. 

Bates & Busing (1974, hereafter referred to as BB) 
fitted (exp-6-1) potential functions to the crystal struc- 
ture of hexachlorobenzene. They found a net charge of 
-0 .1058  e on the C1 atoms, with opposite charges on 
the C atoms. They showed that the net-atomic-charge 
model was superior to the earlier no-charge models. 
They also calculated the lattice frequencies in hexa- 
chlorobenzene and found better agreement with the net- 
charge model. 

Wheeler & Colson (1976) considered nonbonded 
interactions in a qualitative manner for the crystal 
structures of the a, fl, and 7 phases of 1,4-dichloro- 
benzene. They noted especially that the fl crystal form 
has a remarkably short CI-.-C1 distance of 3.38 A 
between atoms in different molecules. The shortest 
CI . . .CI  distances in the a and ), forms are 3.73 and 
3.79 A, respectively. These authors conclude that 
inclusion of anisotropy in the C1-..C1 nonbonded 
potential function is essential to understand the 
molecular packing in these structures. 

Munowitz, Wheeler & Colson (1977)quantitatively 
tested several isotropic (exp-6-1) Cl . . .  C1 functions by 
using them to predict the crystal structures of the three 
phases of 1,4-dichlorobenzene. However, no numerical 
values for the nonbonded potential parameters tested 
are divulged in their paper, making it difficult to 
evaluate the work independently. These authors con- 
elude that isotropic functions are not satisfactory for 
CI . . .  C1 interactions in the 1,4-dichlorobenzene crystal 
structures. 

There can be no doubt that, for ultimate accuracy, an 
anisotropic nonbonded potential is required for every 
atom type. This anisotropy complicates the model. And 
since the anisotropy may vary from molecule to 
molecule, transferability may be more difficult to 
achieve with anisotropic potentials. Thus, there is a 
compromise between accuracy versus simplicity and 
transferability in deriving nonbonded potential 
parameters. 

A threshold of accuracy is needed, above which 
anisotropic treatment is justified. This threshold cannot 
be completely rigorous, and will vary according to the 
purpose at hand. For our purpose we established 
© 1980 International Union of Crystallography 
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thresholds of 1% accuracy in the lattice constants, 1° 
in the cell angles, 2 ° in the molecular rotation, and 0.1 
A in the molecular translation. This judgement of 
accuracy requires that most, but not necessarily all, of 
the structural parameters be fitted within the threshold 
accuracy. Otherwise, a shift to anisotropic or other type 
of more complicated functions is justified. 

Munowitz, Wheeler & Colson did not achieve this 
threshold of accuracy, using isotropic functions, for the 
three phases of 1,4-dichlorobenzene. However, they did 
not examine the full range of isotropic functions. Also, 
it may be noted that thermal effects may be important 
in this type of structure, where polymorphic phase 
transitions occur at certain temperatures. It is possible 
that a systematic examination of isotropic functions, 
including consideration of the effects of thermal motion, 
could result in a model satisfying the threshold 
accuracy requirement. 

In view of the success of the BB isotropic model for 
hexachlorobenzene, a determination was needed of the 
transferability and extendability of this model to other 
Cl-containing crystals. We have selected five well deter- 
mined crystal structures of perchlorohydrocarbons to 
make this test. The absence of H atoms reduces the 
number of potential parameters to consider. We found, 
as is detailed below, that care needs to be taken in the 
selection of the method of derivation of the nonbonded 
potential parameters from the data. 

Basis structures and nonbonded potential functions 

Fig. 1 shows the molecules whose crystal structures 
were utilized for the derivation of the nonbonded 
potential parameters. Table 2 gives the references to the 
experimentally determined crystal structures; it also 
shows the observed structural parameters which are to 
be fitted by the nonbonded potential parameters. For 
one rigid molecule in the asymmetric unit, the maxi- 
mum number of observables are six lattice constants, 
three molecular rotations, and three molecular trans- 
lations. In the table the three independent molecular 
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C | ~ C 1  C I ~ ~ C I  
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Cl C1 ~ ~CIcl 
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(d) 
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C l ~  cl 

CI ~ CI 
Cl Cl 
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Fig. 1. The molecular structures of (a) hexachlorobenzene, (b) 
octachloronaphthalene, (c) octachloropentafulvalene, (d) deca- 
chlorophenanthrene and (e) decachloropyrene. 

rotations, if allowed, have been combined into a single 
rotation for the threshold comparison. Similarly, the 
three.independent translations have been combined into 
a single translation. The actual number of observed 
quantities to be fitted is reduced by symmetry to a total 
of 38 observables for the five structures. The observed 
heat of sublimation of hexachlorobenzene at 0 K, with 
correction for zero-point energy as shown by BB, was 
used to scale the potential functions. 

The assumed form of the nonbonded potential 
functions was the isotropic (exp-6-1) type: 

E(rjk)  = B e x p ( - C r j k )  - A r ~  6 + qjqkr)-k', 

where rjk is a nonbonded distance between atoms j and 
k in different molecules, and A, B, C, and the net atomic 
charges q were the nonbonded parameters. We further 
assume the geometric mean combining law, so that we 
may write 

E ( r )  = b mb ,  exp [ - ( c  m + c , )  r/2] - a m a= r -6 + qjqk r-l" 

The molecule is considered to be rigid and stationary in 
the unit cell, i.e. no thermal motion is explicitly 
contained in the model. 

In the last equation the subscripts m and n are used 
to indicate classification of the coefficients into atomic 
types. For transferability reasons we assign the same 
values for all C atoms, using the values of Williams & 
Starr (1977). All C1 atoms are similarly assumed to 
have the same nonbonded parameters, to be deter- 
mined. C atoms not bonded to C1 are assumed to have 
zero net charge. 

There is a strong correlation between b and c such 
that it is difficult to vary both simultaneously. We have 
selected the value of c = 3.51 A -1 for C1 (previously 
used by BB) and have optimized only b. The only other 
parameters to be optimized are a and q for C1. The ratio 
of observables to parameters is quite good, at 38 to 3. 

Optimization methods 

(1) Direc t  m in im i za t i on  

The optimum generalized nonbonded potential 
parameters, qj, are those which reproduce most closely 
the observed generalized structural parameters, Pi. 
Since the structural parameters are not all on the same 
scale, we define a weighted r.m.s, difference function, 
Rp, to minimize 

11/2 

where Api is the difference between the observed and 
calculated ith structure parameters, and N is the total 
number of structure parameters. The weights, w, are the 
inverse squares of the allowed error thresholds for the 
parameter type, as given above. 
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The predicted values for the structure parameters are 
obtained exactly by minimization of the lattice energy 
for a particular choice of nonbonded potentials. 
Starting from the observed structure, usually many 
cycles of Newton-Raphson refinement are necessary in 
order to find the location of the lattice-energy mini- 
mum with good accuracy. Although the evaluation of 
the lattice sums may be speeded up considerably by 
using the accelerated-convergence method (Williams, 
1971), considerable computer time is still required. The 
lattice-energy minimization must be repeated for each 
trial choice of the nonbonded potential parameters. 
Thus this method, although the most accurate, is 
expensive of computer time. 

(2) Structural parameter shift estimation 

To overcome the computational time required to 
locate the minimum of Rp, Hagler & Lifson (1974) 
suggested using a Taylor's series expansion of the 
gradient vector (whose elements are negatives of the 
forces, F/) of the lattice energy: 

F(p i, q~)= F(p~, qO) + HAp + .... 

where H is the Hessian, or second-derivative matrix, of 
the energy surface with respect to the structural param- 
eters. Since at the lattice-energy minimum F(Pi, qO) = O, 
therefore Ap --H -1 o o = F(Pi,qj ). This is an analytical 
expression for the predicted structural parameter shifts. 
Substitution into Rp yields also an analytical expression 
whose minimum can be found with respect to the qj. 
Actually the equivalent simpler expression ~i  wi(APt) 2 
may be minimized. This procedure requires only a 
single evaluation of the lattice energy and its deriva- 
tives, at the observed structure. The advantage of the 
method is great speed as compared to the direct mini- 
mization method described above. The disadvantage of 
the method is loss of accuracy because of the neglect of 
higher-order terms in the Taylor's series expansion of 
the forces. Also, the derivatives of Api with respect to qj 
are very complex analytical expressions involving the 
inverse of H. These derivatives are usually evaluated by 
numerical approximation. 

(3) Force minimization with diagonal-weight matrix 

This method seeks to minimize the magnitude of the 
gradient vector of the lattice energy. The components of 
the gradient vector are the forces, F/, which should 
vanish at the observed structure when the correct non- 
bonded potentials are used. Because of the different 
scaling of the structural parameters, the components of 
the gradient vector are weighted to yield the residual 
function R FD "- 

RF D = ~. Wu [ Ft(pi, qj)]2. 
i 

The weights, wii, are discussed below in connection 
with the full-weight matrix method. 

The derivatives of RFD with respect to qj are easy to 
obtain in simple analytical form. We define B as a (non- 
square) matrix of derivatives, where Bij = OFi/c~qj. The 
forces are again expanded in a first-order Taylor's 
series, this time as a function of the nonbonded 
potential parameters rather than the structural param- 
eters: 

Ft(pO, qj) = o o F~(pi,q)) + Y IOF~(p°,q°)lOqj)lAqj + .... 
Y 

Substitution yields the matrix equation 

B t wB Aq = - -B t w F ( p  °, qY), 

which may be used iteratively to find shifts Aqj towards 
the optimum values of qj. 

(4) Force minimhration with fulI-weight matrix 

Instead of minimizing only the magnitude of the 
force gradient, cross terms can be included with 
appropriate weights to define the function Re: 

= w i k S ( p i , q j )  rk(Pk,  qj). R,~(qj) Y Y o o 
i k 

The solution for the optimum values of qj which mini- 
mize R e is the same as before, except now the off- 
diagonal weights may be nonzero. It can be shown 
(Busing, 1970) that near convergence the weight matrix 
is 

W : [H t VH] -1, 

where V is a diagonal matrix with V u = 62(pi), the 
variance or error threshold assigned to the observed 
structural parameters. 

As we shall see, rather different results can be 
obtained with the diagonal- and full-weight methods, 
even though they superficially appear quite similar. The 
full-weight method does require the extra matrix 
inversion indicated, but little additional time or pro- 
gramming effort is needed for this. 

The diagonal weights for method (3) are obtained in 
the same manner as the full weights, except that only 
the diagonal elements of the Hessian are used. The 
matrix inversion is now trivial, so that w, = V-~lH~ 2. 

Obviously, the calculated forces vanish as the non- 
bonded parameters go to zero, so that it was necessary 
to scale the nonbonded energy in some way. This was 
accomplished by requiring that the calculated lattice 
energy of hexachlorobenzene be equal to the observed 
heat of sublimation at absolute zero temperature. The 
side condition was incorporated by adding the penalty 
function 

W' (Elattic e --/Ins°) 2 
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for hexachlorobenzene;  w' is adjusted sufficiently large 
to obtain the desired fit between the observed and 
calculated lattice energies. 

The lattice sum was treated by a convergence- 
acceleration technique (Williams, 1971). It is necessary 
to use convergence acceleration to achieve accuracy  in 
the lattice sums, part icular ly the Coulombic  sums. We 
estimate that  our lattice sums are converged within 1%. 
Both the first and second derivatives of the lattice 
energy were evaluated analyt ical ly rather  than 
numerically.  This procedure saves time and increases 
accuracy.  

Results and discussion 

specified. The present work shows that  the full-weight 
force method may  be extended to the set of  five 
perch lorohydrocarbon  structures. The structural  
parameter  shift est imation method is not quite as good 
as the full-weight force method. This method was also 
found to be slightly less good than the force method for 
hydrocarbon  structures (Will iams & Starr,  1977). Very 

Table 2. Structural parameter shifts obtained by 
minimization of the lattice energy using the nonbonded 

potential parameter sets of Table 1 

References are given to the experimental crystal structure deter- 
minations. The number of independent observed structural para- 

meters is given following the name of the compound. 

The optimized potential  parameters  obtained by each 
method from the set of five perch lorohydrocarbon  
structures are shown in Table 1. The potential  param- 
eters of BB are also shown for comparison.  Each of the 
five sets of  nonbonded  potential  parameters  was tested 
by finding the corresponding minimum-energy struc- 
tures (Williams, 1979) for the five perchlorohydro-  
carbon crystal  structures. The differences between the 
calculated and observed structural  parameters  are 
shown in Table 2. 

The BB nonbonded  parameters  are surprisingly 
good, even though they were derived from only one 
structure. Because of the larger number  of structures 
fitted, the present parameters  should be more accurate 
than those of  BB, using the full-weight force method in 
each case. The BB parameters  predict the lattice energy 
of hexachlorobenzene  too small (see below). 

The parameters  from the force minimizat ion with 
diagonal  weights are surprisingly bad (method 3). The 
difficulty with method (3) arose mainly in fitting the 
molecular  angular  orientat ion in hexachlorobenzene.  
Method (3) has previously been used, apparent ly  
successfully, for hydrocarbons  and a variety of other 
types of  crystals.  We have also encountered some 
problems using the diagonal-weight  method for the 
crystal  structures of the halogens (Hsu & Williams, 
1980). In that  case also the use of full weights remedied 
the problems, making it the method of choice. 

BB used the full-weight force method in their work, 
al though the exact values of their weights were not 

Table 1. The nonbonded potential parameters 
The first set was derived from hexachlorobenzene by Bates & 
Busing (1974). The other sets were derived in this work from all five 
perchlorophydrocarbon crystal structures. Our assumed values for 
carbon are a = 49.13, b = 606.0, c -- 3.60, and q(C) = - q(C 1) 
(Williams & Starr, 1977). The units are/~ and kJ mol -~. 

Parameter BB Method (1) Method (2) Method (3) Method (4) 
a 85.42 87.98 91.36 86.64 89.10 
b 942.8 961.6 1018.7 931.2 974.9 
q 0.1058 0.1090 0.1022 0.0842 0.1019 

Structural 
parameter 
and obscrved Method Method Mcthod Method 
value BB (1) (2) (3) (4) 

Hexachlorobenzene; Brown & Strydom (1974); 
4 lattice constants + 3 rotations 

a (8.0476 .~) -0.05 -0-06 -0.01 0-17 --0.04 
b (3.8363/~,) -0.02 -0.02 -0.04 0-00 -0.05 
c (14.8208/~,) 0.17 0-14 0.22 -0.54 0-18 
fl (92.13 ° ) -0.5 -0.3 -0.9 -8.1 -1.1 
0(0.0 °) 1.5 1.4 2.2 24.5 2.9 

Octachloronaphthalene; Gafner & Herbstein (1963); 
4 lattice constants + 3 rotations + 3 translations 

a (19.48) 0.15 0.14 0.19 0.07 0.13 
b (7.30) -0.13 -0.14 -0.12 -0.16 -0-13 
c (9.76) 0.05 0.04 0.07 0.01 0.04 
fl (111.55) -0.8 -0.8 -0-5 -0.4 -0.6 
0 (0.0) 0.4 0.4 0-2 0.1 0.3 
t (0.0A) 0.16 0.17 0.12 0.06 0.12 

Octachloropentafulvalene; Ammon, Wheeler & Agranat (1973); 
4 lattice constants + 1 rotation + 1 translation 

a (14.998) 0.04 0.03 0-09 -0.01 0.03 
b (7.91 I) -0.06 -0.07 -0.04 -0.08 -0.05 
c (I 1.8068) 0.03 0.03 0.05 -0.01 0.02 
fl(103.38) 1.6 1.6 1.6 1.6 1.6 
0 (0.0) 1.8 1.8 1.8 1.8 1.8 
t (0.0) 0.00 0.00 0.00 0.01 0.00 

Decachlorophenanthrene; Herbstein, Kapon & Merksamer (1976); 
3 lattice constants + 1 rotation + 1 translation 

a (5.065) -0.03 -0.02 -0.02 -0.08 -0.03 
b (17.946) -0.01 -0.03 0.04 -0.07 -0.02 
c (18.554) 0.25 0.19 0.33 0.34 0.25 
0 (0.0) 0.0 0.2 0.1 0-5 0.0 
t (0.0) 0.09 0.08 0.11 0.10 0.06 

Decachloropyrene; Hazell & Jagner (1976); 
4 lattice constants + 3 rotations + 3 translations 

a (21.462) 0.16 0.15 0-19 0.11 0.15 
b (7.494) -0.02 -0.03 -0.00 -0.04 -0.01 
c (10.803) 0.05 0.05 0.08 -0.01 0.04 
fl (92.8) 0.0 0.1 -0.0 0.4 0.2 
/9(0.0) 0.6 0.6 0.6 0.9 0.7 
t (0.0) 0.12 0.12 0.13 0.13 0.12 

Calculated lattice energy of hexachlorobenzene 
(observed value was taken as -98.74 kJ tool -1) 

Elatt lc e -91.7 -96.0 -100.0 -98.6 -98-6 

Discrepancy index for all structures 
Rp 0.827 0.815 0.908 2.998 0.869 
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likely the difficulties with the structural parameter shift 
estimation method are caused by non-negligible contri- 
butions of higher-order terms in the Taylor's series 
expansion. Hagler & Lifson (1974) have commented on 
this point. 

Because of the significant differences obtained by the 
different methods of derivation, we directly minimized 
Rp by external variation of the qj on a grid. As expected 
(method 1), this gave the lowest possible value of Rp. 
Method (4) is sufficiently close to method (1) that it is 
doubtful if the extra computer time required for method 
(1) is justified. Method (2) appears to be fairly satis- 
factory, but seems to offer no particular advantage over 
method (4). 

Our test of the BB parameters gave a heat of 
sublimation for hexachlorobenzene of 91.66 kJ mo1-1, 
as compared to the observed value of 98.74 kJ mo1-1. 
Thus, although these parameters give an excellent fit to 
the structure, the fit to the heat of sublimation is not so 
good. This apparent relaxation of the scaling condition 
to the lattice energy may be the reason why the BB Rp 
value is slightly less than our result using the force 
method with full weights. In our calculations we 
obtained a better fit to the heat of sublimation of hexa- 
chlorobenzene, as is shown in Table 2. 

Except for the results of method (3), the Rp value was 
always found to be less than the threshold value of 1.0. 
This fit is considered to be sufficiently good as to make 
the introduction of explicit anisotropy into the potential 
functions unnecessary. 

The net atomic charges of 0.1 e do not lead to a large 
Coulombic contribution to the lattice energy, compared 
to hydrocarbons. Thus, hexachlorobenzene has the 
largest Coulombic contribution of the five perchloro- 
hydrocarbons considered: 6.6%. For comparison, our 
calculations show that benzene, with net atomic 
charges of 0.15 e, has a Coulombic contribution of 
21%. 

Since the ratio of Coulombic contributions is smaller 
than predicted from the square of the ratio of the net 
atomic charges, the packing in hexachlorobenzene must 
not favor Coulombic interaction as much. The disper- 
sion attraction between C1 atoms is much larger than 
the dispersion attraction between H atoms, so that it is 
more likely that CI atoms will be close together. The 
proximal chlorines will reduce the Coulombic packing 
energy, because of their Coulombic repulsion. 

Several theoretical estimates of the net charge on the 
C1 atoms in hexachlorobenzene are available. Clark, 
Chambers, Kilcast & Musgrave (1972) obtained a 
value o f - 0 . 0 9 3  e using CNDO/2 molecular-orbital 
methods. Wulfsberg & West (1972) estimated this 
charge as -0 .18  e based on an interpretation of nuclear 

quadrupole resonance data. Pedersen & Carlson (1975) 
obtained a charge o f -0 .061  e from an ab initio SCF-  
MO calculation using a STO-3G basis set. It is known 
that STO-3G basis sets usually yield smaller net atomic 
charges than larger and more accurate basis sets, such 
as 6-31G (Steiner, 1976). However, no larger basis-set 
calculations for hexachlorobenzene are available at this 
time. 
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Sciences. We thank Dr W. R. Busing and Professor S. 
C. Nyburg for helpful criticisms which led us to 
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